Role of inspiratory pacemaker neurons in mediating the hypoxic response of the respiratory network in vitro.

نویسندگان

  • M Thoby-Brisson
  • J M Ramirez
چکیده

In severe hypoxia the breathing frequency is modulated in a biphasic manner: an initial increase (augmentation) is followed by a depression and cessation of breathing (apnea). Using a mouse slice preparation that contains the functional respiratory network, we aimed at identifying the neurons responsible for this frequency modulation. Whole-cell patch recordings revealed that expiratory neurons become tonically active during anoxia, indicating that these neurons cannot be responsible for the respiratory frequency modulation. Inspiratory neurons tended to depolarize (by 6.9 mV; n = 9), and the frequency of rhythmic activity was significantly increased during anoxia (from 0.16 to 0.4 Hz; n = 9). After the blockade of network activity with 6-cyano-7-nitroquinoxaline-2, 3-dione, most inspiratory neurons became tonically active (72%; n = 25, non-pacemaker). In anoxia, the membrane potential of these non-pacemaker neurons did not change (-0.26 mV; n = 6), and their tonic activity ceased. Only a subpopulation of inspiratory neurons remained rhythmically active in the absence of network activity (pacemaker neurons, 28%, 7 of 25 inspiratory neurons). In anoxia two subgroups of pacemaker neurons were differentiated; one group showed a transient increase in the bursting activity, followed by a decrease and cessation of rhythmic activity. These neurons tended to depolarize (by 10.3 mV) during anoxia. The second group remained rhythmic during the entire anoxic exposure and exhibited no depolarization. The time course of the frequency modulation in all pacemaker neurons resembled that of the intact network. We conclude that pacemaker neurons are primarily responsible for the frequency modulation in anoxia and that in the respiratory network there is a strict separation between rhythm- and pattern-generating mechanisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Anion Exchanger on Pulmonary Vascular Response to Sustained Alveolar Hypoxia in the Isolated Perfused Rabbit Lung

Background: Some respiratory diseases may induce alveolar hypoxia thereby hypoxic pulmonary vasoconstriction (HPV). However, the mechanisms of this physiologic phenomenon are not fully understood. This study was the first to investigate the role of anion exchanger in sustained HPV.Methods: Experiments were performed in the isolated perfused rabbit lung. After preparation, the lungs were divided...

متن کامل

Counterpoint: Medullary pacemaker neurons are essential for gasping, but not eupnea, in mammals.

activity imbues the respiratory network with the plasticity essential for eupnea. The extreme view, i.e., that pacemakers play no role in eupnea, would require that all bursting properties are suppressed in normoxia. For this notion, there is as little evidence as for the proposal that the pre-Bötzinger complex is suppressed during eupnea. Endogenous neuromodulators are essential for bursting d...

متن کامل

Identification of two types of inspiratory pacemaker neurons in the isolated respiratory neural network of mice.

In the respiratory network of mice, we characterized with the whole cell patch-clamp technique pacemaker properties in neurons discharging in phase with inspiration. The respiratory network was isolated in a transverse brain stem slice containing the pre-Bötzinger complex (PBC), the presumed site for respiratory rhythm generation. After blockade of respiratory network activity with 6-cyano-7-ni...

متن کامل

Point:Counterpoint: Medullary pacemaker neurons are essential for both eupnea and gasping in mammals vs. medullary pacemaker neurons are essential for gasping, but not eupnea, in mammals POINT: MEDULLARY PACEMAKER NEURONS ARE ESSENTIAL FOR BOTH EUPNEA AND GASPING IN MAMMALS

Despite intense research it remains unresolved whether pacemakers are essential for eupnea and/or gasping. Recordings of neural activity in vivo and in vitro and attempts to eliminate pacemaker activity through pharmacological lesions have led to controversial interpretations. Yet it must be emphasized that major progress has been achieved over the past decade. Medullary network located within ...

متن کامل

Glycinergic pacemaker neurons in preBötzinger complex of neonatal mouse.

The preBötzinger complex (preBötC) is essential for normal respiratory rhythm generation in rodents, for which the underlying mechanisms remain unknown. Excitatory preBötC pacemaker neurons are proposed to be necessary for rhythm generation. Here we report the presence of a population of preBötC glycinergic pacemaker neurons. We used rhythmic in vitro transverse slice preparations from transgen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 15  شماره 

صفحات  -

تاریخ انتشار 2000